- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Moore, Joshua A (2)
-
Uribe, Rosa A (2)
-
Baker, Phillip A (1)
-
Chen, Yuda (1)
-
Corteguera, Julia A (1)
-
Duan, Qinghui (1)
-
Howard, Aubrey GA (1)
-
Ibarra-García-Padilla, Rodrigo (1)
-
Lee, Catherine (1)
-
Miller, Mitchell D (1)
-
Peng, Zane (1)
-
Phillips, George N (1)
-
Rivas, Lucia J (1)
-
Singleton, Eileen W (1)
-
Tallman, James J (1)
-
Westheimer, Jessa L (1)
-
Wu, Kuan‐Lin (1)
-
Xiao, Han (1)
-
Xu, Weijun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Genetic code expansion technology allows for the use of noncanonical amino acids (ncAAs) to create semisynthetic organisms for both biochemical and biomedical applications. However, exogenous feeding of chemically synthesized ncAAs at high concentrations is required to compensate for the inefficient cellular uptake and incorporation of these components into proteins, especially in the case of eukaryotic cells and multicellular organisms. To generate organisms capable of autonomously biosynthesizing an ncAA and incorporating it into proteins, we have engineered a metabolic pathway for the synthesis ofO‐methyltyrosine (OMeY). Specifically, we endowed organisms with a marformycins biosynthetic pathway‐derived methyltransferase that efficiently converts tyrosine to OMeY in the presence of the co‐factorS‐adenosylmethionine. The resulting cells can produce and site‐specifically incorporate OMeY into proteins at much higher levels than cells exogenously fed OMeY. To understand the structural basis for the substrate selectivity of the transferase, we solved the X‐ray crystal structures of the ligand‐free and tyrosine‐bound enzymes. Most importantly, we have extended this OMeY biosynthetic system to both mammalian cells and the zebrafish model to enhance the utility of genetic code expansion. The creation of autonomous eukaryotes using a 21st amino acid will make genetic code expansion technology more applicable to multicellular organisms, providing valuable vertebrate models for biological and biomedical research.more » « less
-
An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolutionHoward, Aubrey GA; Baker, Phillip A; Ibarra-García-Padilla, Rodrigo; Moore, Joshua A; Rivas, Lucia J; Tallman, James J; Singleton, Eileen W; Westheimer, Jessa L; Corteguera, Julia A; Uribe, Rosa A (, eLife)Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.more » « less
An official website of the United States government
